
Extrinsic Eye-Tracker Calibration

Ayush Chamoli1 and Mahdi Chamsaddine2

1 chamoli@rptu.del
2 mahdi.chamseddine@dfki.de

Abstract. With the recent advancements in the augmented reality technology, eye-trackers
are important now more than they have ever been. The gaze data is used to calculate where
person is looking at in the space around them. This gaze data is not only relevant to the device
which has the eye tracker, but it can also be used in another frame of reference. However, this
functionality does not come with most of the eye-trackers. This project provides an end-to-end
framework called PupilCalib which helps with the task. It provides a modular API that can
be used with any eye tracker hardware to project the gaze information to another frame of
reference.

Keywords: Eye Tracker, Camera Calibration, Pupil Detection

1 Introduction

Eye tracking has been a necessary aspect in order to study and understand human behaviour and
their cognitive processes [7]. An eye tracker headset captures and interprets subtle movement of
person’s eyes. Typically, these systems involve combination of cameras, infrared sensors and image
processing algorithms. With the use of this, these systems can track eye movement, distinguish
between fixations (periods of subtle gaze) and saccades (rapid eye movements between fixations)
and produce detailed gaze plots and heatmaps to visualize region of interest. Currently, it finds its
use in the a variety of fields including psychology, market research, human computer interaction,
medical diagnostics, virtual reality and gaming.

However, most of the eye tracking solutions out there aim to find out the position of the gaze of
the user with respect to the eye tracking headset itself, which is done with the use of user’s pupils
and projecting the point on which the user’s eye look onto the scene. This gaze information can
also be useful and relevant outside the eye tracking headset itself. Even though most of the modern
solutions provide API for accessing this gaze information, it is only relevant with respect to the
camera module attached with the eye tracker headset. As it turns out, this gaze information can
also be useful in another frame of reference. For example, in a vehicle with a camera mounted on
it, it can be really useful to have information of a user’s gaze with respect to the vehicle camera. It
can also be helpful in various human-computer interaction and augmented reality applications.

This project aims to provide an end-to-end API that can be used to project gaze from eye tracker
headset to another camera. In this report, the details about the eye tracker and other elements of
the setup is discussed. It is then followed by the methodology used to implement the API solution,
PupilCalib.

2 Related Work

In order to understand the working of PupilCalib, we will take a look at several hardware components
and techniques used in computer vision.



2

2.1 Pupil Core

Pupil Core [4] is a headset which captures and records the gaze data of the person. It includes a
scene camera and two infrared (IR) spectrum eye camera for pupil detection. The scene camera is
mounted above the user’s eye on the frame which aligns the scene camera optics with the user’s
eye. The scene camera captures a portion of the users field of view at 30Hz while the eye camera is
mounted on the frame and it faces the user’s pupil. It captures the user’s pupil at 30Hz.

The Pupil API uses “dark pupil” detection method in order to detect pupil and project gaze on
the scene camera output. Upon getting the region of interest via the strongest response for center-
surround feature as proposed by Swirski [6], the edges are detected using Canny [1] in order to
find contours in eye image. Contours are filtered and split into sub-contours based on criteria of
curvature continuity. Pupil ellipse is then formed using ellipse fitting [3] on the subset of contours.
The result is calculated as a ratio of supporting edge length and ellipse circumference. If this ratio
is above a threshold, the pupil ellipse is reported. Otherwise the algorithm reports no pupil.

The algorithm is robust to reflections and can therefore work for user wearing contact lenses or
eyeglasses. After calibration, detection rate is 80%.

2.2 Camera Calibration

Camera calibration is an important step in computer vision and it is used to determine the intrinsic
and extrinsic parameters of a camera. Intrinsic camera parameters define how a 3D scene projects
onto a 2D image. Intrinsic Calibration is necessary in order to remove radial distortion. Using a
chessboard pattern is a common way to determine the intrinsic parameters of a camera. It is defined
by:

camera matrix =

αx s cx
0 αy cy
0 0 1

 (1)

where αx = fkx and αy = fky represent the focal length in pixels along the x-axis and y-
axis respectively, (cx, cy) represent the coordinates of the center of the image and s represents the
skew. These parameters are crucial in order to convert the pixel coordinates of an image to camera
coordinates and vice versa.

Extrinsic calibration is necessary to determine the camera’s position and orientation in the real
world with respect to the camera coordinate system. It defines the camera’s position and orientation
relative to the world coordinate system. It is defined by:[

R3×3 t3×1

01×3 1

]
(2)

where R is the rotation matrix which specifies the orientation of the camera with respect to the
world coordinate system and T is the translation vector which describe the camera position with
respect to the world coordinate system.

It is useful in converting a point from the camera coordinate system to the world coordinate
system and vice versa.

2.3 AprilTags

AprilTags [5] are fiducial visual marker system which are commonly used in computer vision and
robotics application. They are similar to QR codes, that is they have unique black-and-white square
patterns which are encoded identifiers and it makes it easy for the camera to distinguish them.
They are robust to varying lighting conditions and also partial occlusion to perspective. With a
proper detection algorithm, they are ideal in the field of robotics and augmented reality. They help
in tracking and localizing objects in 3D space.



3

3 Implementation details

This project uses Pupil Core as the eye tracker headset and IDS 3080CP camera. The camera on
top of pupil headset is referred as the scene camera and the IDS camera is referred as the world
camera.

The use of Pupil API involves the use of Pupil Core Software which does the heavy lifting part
of detecting the pupils and providing the gaze information. It also provides with the camera feed for
the scene camera and both the infra-red (IR) eye camera. Along with this, it constantly provides
the confidence of the gaze data. The IDS camera uses it’s own API in order to access the camera
feed and is available to download and use on their website.

The software solution, PupilCalib, is made using PyQt. It includes classes for managing camera
and is overloaded for each specific camera which makes the entire API modular. The main idea for
the end-to-end solution is to make sure that the solution works with any eye-tracking headset and
any camera with minimal effort.

3.1 Intrinsic camera calibration for world and scene camera

The initial step involves determining the intrinsic camera parameters for world camera and scene
camera. In order to do this, a chessboard pattern is used. The chessboard is placed at different
positions and the images are taken. These images are then used to calculate the intrinsic parameters
of the camera. This is done for both, the world and the scene camera.

The API comes with the functionality of saving and loading these parameters in case of using
the same cameras.

Fig. 1: Intrinsic Camera Calibration for world camera

3.2 Detecting Gaze and projecting it on the scene camera

The information of the Gaze can be accessed by the Pupil Core API. The gaze data is accurate
upto a distance of 1 meter in front of the user and the accuracy of this data drops as the user starts



4

looking at object further away. This can be projected on the scene camera which indicates the point
at which the user is looking. The gaze point is represented in the scene camera coordinate system
as 

xgaze
ygaze
zgaze

1

 (3)

Now with the use of the intrinsic camera coordinates for the scene camera, the pixel coordinate
of the gaze can be calculated as

ugazevgaze
wgaze

 =

αx s cx 0
0 αy cy 0
0 0 1 0


scene


xgaze
ygaze
zgaze

1

 (4)

xpixgaze =
ugaze
wgaze

(5)

ypixgaze =
vgaze
wgaze

(6)

Fig. 2: Gaze point in the scene camera

3.3 Detecting AprilTags in the world and scene camera

In the setup, the AprilTags are placed at known locations with known world coordinates. The
corresponding world coordinates are fed to the API before detecting the AprilTags. Once this is
done, the AprilTags are located on each of the image using a detection algorithm and the pixel
coordinates of the corners of each AprilTag is saved for further processing.



5

Fig. 3: AprilTag detection on the scene camera

3.4 Extrinsic calibration for world and scene camera with respect to the AprilTags

With the use of the pixel coordinates of the corners of the AprilTags, the extrinsic parameters of
each of the camera is calculated. This is done for each frame with the use of Perspective-n-Point
(PnP) pose computation [2]. It solves this problem by solving for rotation and translation which
minimize the re-projection error from the 3D-2D point correspondences.

3.5 Projecting the gaze on the world camera

Upon obtaining the intrinsic and extrinsic parameters for both the cameras, the gaze point is pro-
jected in the world camera.

First the gaze point is obtained in the world coordinate system.
Xgaze

Ygaze
Zgaze

1

 =

[
Rscene tscene

0 1

]−1

4×4


xgaze
ygaze
zgaze

1

 (7)

Now, this gaze point is used to calculate the gaze point in the world camera coordinate system
by using the extrinsic parameters of the world camera.

x̄gaze
ȳgaze
z̄gaze

1

 =

[
Rworld tworld

0 1

]
4×4


Xgaze

Ygaze
Zgaze

1

 (8)

Finally, in order to project this point on the image, we transform the world camera coordinate
point to pixel coordinates using the intrinsic camera parameters of the world camera.

ūgazev̄gaze
w̄gaze

 =

αx s cx 0
0 αy cy 0
0 0 1 0


world


x̄gaze
ȳgaze
z̄gaze

1

 (9)

x̄pixgaze =
ūgaze
w̄gaze

(10)

ȳpixgaze =
v̄gaze
w̄gaze

(11)



6

Here, (x̄pixgaze, ȳ
pix
gaze) is the pixel coordinates of the gaze in world camera. This point is drawn on

the image of the world camera and only appears if this point lies in the visible range of the image.

3.6 Exporting this information

The (x̄pixgaze, ȳ
pix
gaze) and (x̄gaze, ȳgaze, z̄gaze) is accessible to the end user via the API which can then

be used for further analysis.

4 Experiments

The PupilCalib API is tested with the help of the AprilTags. Upon setting up the devices and
calibrating them, a new target AprilTag is placed in the views of both of the camera. Now, the user
wearing the Pupil Core looks at the target and the information is used to project the 3D gaze point
to the world camera. The error here is calculated as the pixel distance between the position of the
new AprilTag in the world camera and the projection of the 3D gaze in the world camera.

Target Distance Light Settings Obervations Mean Standard Deviation

<= 1m Well Lit Room 30 74.38 12.57

> 1m Well Lit Room 20 102.82 15.90

<= 1m Dim Lit Room 45 93.34 28.53

> 1m Dim Lit Room 30 135.78 41.45

Table 1: PupilCalib performance with IDS 3080CP and Pupil Core in different settings

Table 1 shows that PupilCalib performs the best in a well lit condition when the 3D gaze point is
less than 1m away from the user. However, a significant drop in performance is also observed in dim
lit conditions as it generates a lot of noise in the world camera and removing the noise by blurring
affects the extrinsic world camera calibration. A similar drop in performance is also observed as the
target AprilTag is placed further away and Pupil Core API doesn’t return 3D gaze point with a
high confidence resulting in inaccurate calculation for the gaze point in world camera.

5 API Details

PupilCalib has a modular design and is therefore implemented with the idea of using different piece
of hardware. It has a class based design which helps in achieving this task. The base class of the
API performs all the tasks necessary and needs implementation of one to two functions only.

The world camera must inherit from the class CameraManager. This inherited class needs an
updated captureCurrentFrame() function which basically stores the current buffer of the camera
in it’s m_current_frame variable. The image must also be converted to 8-bit black and white image.

The scene camera must inherit from class CoreManager. This inherited class also needs an update
for the captureCurrentFrame() function. The current frame should be converted to 8-bit black
and white image. In case the hardware also captures images of pupils, those can be stored in
m_current_left and m_current_right. Also, the 3D gaze point must be stored in the class in the
variable interest_point.

Once these new classes are implemented, they can be plugged in the PupilCalib API and can be
used to project the 3D gaze point from the new scene camera to the new world camera.



7

6 Conclusion

In this report, we’ve described about our API, PupilCalib, which provides an easy-to-use method
that provides a way to project 3D gaze point from the eye tracker hardware to another camera.
The API is modular and can therefore be expanded to be used with any eye tracker hardware. The
observations are taken in different testing conditions and the results are described.

References

1. John Canny. A computational approach to edge detection. IEEE Transactions on pattern analysis and
machine intelligence, (6):679–698, 1986.

2. Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartography. Commun. ACM, 24(6):381–395, jun 1981.

3. Andrew W Fitzgibbon, Robert B Fisher, et al. A buyer’s guide to conic fitting. Citeseer, 1996.
4. Moritz Kassner, William Patera, and Andreas Bulling. Pupil: An open source platform for pervasive eye

tracking and mobile gaze-based interaction, 2014.
5. Edwin Olson. AprilTag: A robust and flexible visual fiducial system. In Proceedings of the IEEE Inter-

national Conference on Robotics and Automation (ICRA), pages 3400–3407. IEEE, May 2011.
6. Lech Świrski, Andreas Bulling, and Neil Dodgson. Robust, real-time pupil tracking in highly off-axis

images. In Proc. ACM International Symposium on Eye Tracking Research and Applications (ETRA),
pages 173–176, 2012.

7. Nicholas J. Wade and Benjamin W. Tatler. The Moving Tablet of the Eye: the origins of modern eye
movement research. Oxford University Press, United Kingdom, 2005.


