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Abstract. Human Pose Estimation is one of the important applications of Computer Vision.
It involves determining the spatial configuration of different joints of human body. This is
important for applications ranging from healthcare, improving human computer interaction,
performance analysis in sports, among other fields. Up until recently, Convolutional Architec-
tures have played an important role in Pose Estimation. However with the recent development
in the Transformers Architecture, especially in the field of Neural Language Processing tasks,
an emerging trend of the use of Transformer Architecture is seen in Pose Estimation. Here we
go in depth into some of the architectures for Body and Hand Pose Estimation.

Keywords: Transformer, Pose Estimation

1 Introduction

3D Human Pose estimation aims to determine the joints of a human body. There has been a signif-
icant interest in 3D Human Pose estimation in the recent years in the computer vision community
because of the wide range of application, which includes action recognition[7][8], virtual reality, sport
motion analysis, neurodegenerative condition diagnoses and many more. However it is a complex
problem because of issues like articulated motion, occlusions and depth ambiguity while determining
the position of the 3D joints.

Convolutional network architectures have been the standard method to determine human poses
[1][15]. However, they suffer from a number of issues which arise from the fact that CNNs rely on
dilation techniques as they have limited temporal connectivity. To improve upon that, temporal
convolutional neural architecture [3][12] and recurrent architecture [5] are also used in order to
capture and understand global dependencies across multiple frames. However, the simple sequential
correlation is a sub-problem for such recurrent networks.

Another technique to determine 3D human poses is 2D-to-3D human pose estimation. It uses the
coordinates of the 2D joint as an input and determines the 3D pose based on it. However, convolu-
tional network architectures have a hard time to work with such sort of data. Graph convolutional
networks, which are great with structural information, are better at learning such representations of
human pose. These GCN architecture [2][17] perform well but is often limited because of the small
receptive fields.

Detecting the hand pose from an image is also an important application of Computer Vision. The
idea behind it is pretty similar to that of human pose estimation, with the only difference being of
detecting hand joints instead of body joints. Similar techniques can be employed for this application
as well. However, we suffer from the issue of occlusion which is not easily solved with the techniques
listed above.

An increasing trend has been observed in the use of Transformers, and it turns out it can not only
be used in language processing tasks but also, recent works suggest they perform really well in the
application of human and hand pose estimation. Transformers with their self-attention mechanism,
which model the dependencies in inputs and outputs, provide an important framework for learning
and estimating body poses from the images and videos.

In this seminar report, we will discuss some of the recent techniques for estimating body and
hand pose and compare their results.
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2 Background

2.1 Transformers

The transformer architecture which was introduced in the paper ” Attention is All You Need” [16] has
revolutionized natural language processing and computer vision tasks. At it’s core, the transformer
architecture uses self attention mechanism which lets it learn and capture long-range dependencies.
Transformer can be parallelized with the use of multi-head self attention which helps in training
and can therefore be scaled up. Recent works[19][18] shows that self-attention achieves state of the
art results in computer vision tasks that which in the past involved the use of convolutional neural
networks.

2.2 3D Pose Estimation

There are multiple ways of approaching the problem of 3D Pose Estimation. The two common ones
are the one-stage approach and the two-stage approach. In one-stage approach, the input images
are directly used in order to calculate the 3D pose. It does not require the use of an intermediate
2D pose. The two-stage approach on the other hand first evaluates the 2D pose from the input and
then it uses the 2D pose as an input to calculate the 3D pose. There are approaches that exploit the
information in the spatial domain, the temporal domain or uses convolutional-based, graph-based
architecture and many more.

3 Methodologies

3.1 PoseFormer

PoseFormer[19] is a spatio-temporal transformer, which performs 3D human pose estimation by lift-
ing from 2D to 3D. It comprises 3 modules: spatial transformer, temporal transformer and regression
head.

The spatial transformer extracts high dimensional feature embedding from each frame. Consid-
ering a 2D pose with J joints, the coordinates of each joint j € J is projected to a higher dimension
with a trainable linear projection. Learnable spatial positional embeddings Egp,s € R7*¢ are added
to linear projection. Hence the input for i-th frame becomes xf € R7*¢ where c is the spatial em-
bedding dimension. These joint sequences of features are passed to the spatial transformer which
applies self-attention over all J joints. The output for i-th frame with L layers is :UiL_Spatial € RIxe

The temporal transformer extract the dependencies across the frames. For i-th frame, the out-
put of spatial transformer z% € R7*¢ is flattened to a vector &' € R (/<) and then they are
concatenated for f input frames as X € R/*(/©). The learnable temporal positional embeddings
Erpos € RI*(1€) is also added at this point. Then this is passed through the temporal transformer
which follows the same architecture as temporal transformer consisting of multi-head self attention
and multi-layer perceptron blocks. The output of this module is Xiemporar € RS x(Je),

In order to estimate the 3D Pose of the frame, the output of the temporal transformer is passed
through a regression head that is a simple MLP with Layer norm and a linear layer and a weighted
mean operation with learnable parameters is used. The output of this layer y € R'*(/3) gives the
3D pose estimate of the center frame.

This model is trained by MPJPE (Mean Per Joint Position Error) where the goal is to minimize
the error between predicted and ground truth pose coordinates.



3.2 Graformer

Graformer[18] is a transformer architecture combined with graph convolutions to perform 3D pose
estimation. It consists of two modules which are stacked one after another repeatedly. These modules
are the GraAttention and ChebGConv block.

The input of the Graformer is the 2D joint coordinate xy € R7*“. The input is firstly preprocessed
by ChebGConv layer. It is used to handle graph-structed data. The Chebyshev graph convolution
is evaluated for layer I as:

Gx2

Xl+1 = U]i(:_olTk ([N/)Xlek

where Ty () = 22T _1(x) — 2;x—1(x) denotes the Chebyshev polynomial of degree k, Ty =1, T1 = x
and L € R7%J denotes the re-scaled Laplacian. 8, € RP*DPi+1 denotes the trainable parameter of
the graph convolutional layer. This block is able to capture information among the K top neighbors
of the joint and therefore increases the receptive field.

After preprocessing, we stack the GraAttention and ChebGConv block for N times. This inherits
the multi-head self attention mechanism from the Transformer architecture but removes the MLP
layer. This is followed by the use of a dropout layer in order to regualize the self attention output.
The global interaction is exploited here as each element of the block has 2D joint information.
Normalization is done on the output followed by GCN layers and ReLU activation.

GraAttention and ChebGConv layers are used in repeated succession as GraAttention block gives
a global receptive field while the ChebGConv gives the local receptive field. It is represented well in
the following figure.

GCN self-attention ChebGConv
(a) (b) ©

Fig. 1: Receptive field of blocks of GraFormer

The model is train by using MPJPE to minimize the error between the predicted and ground
truth coordinates of the 3D Pose.

3.3 METRO

Human pose mesh estimation is superior to joint estimation which is discussed in the methods above
as it offers a more detailed 3D representation of human pose which is crucial for applications which
require precise body shape. MEsh TRansfOrmer[10] uses transformer encoder to model vertex-
vertex and vertex-join interaction in a 3D human pose. It consists of 2 modules: Convolutional
Neural Network and a Multi-Layer Transformer Encoder.

The task of the convolutional neural network block is to extract features. In order to do this, the
CNN is pre-trained on ImageNet classification task [14]. The feature vector X € R2%48x1 from the
last hidden layer is taken as the input for the transformer layer. Here X has a dimension of 2048.

Now the transformer encoder with several modifications is used. The output of the convolutional
neural network block is passed through several blocks to perform dimensionality reduction gradually.
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This block is refered as the Multi-Layer Transformer Encoder. The image feature vector X with tem-
plate 3D coordinates of the pose is concatenated to form the set of joint queries Q; = ¢, ¢&, ...¢ .
Similarly for mesh vertices v, a set of vertex queries @y are formed.

In order to obtain the bi-directional attention in the transformer model, Masked Vertex Modeling
(MVM) is used for the regression task. MVM forces transformer to regress 3D coordinates by taking
other vertices and joints in consideration which helps in learning the local and global interaction of
each joint.

This model applies MPJPE loss on the output of the transformer module and tries to minimize
it. 2D reprojection is also used in order to refine the image-mesh alignment.

3.4 HandOccNet
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Fig. 2: Architecture of HandOccNet

HandOccNet[13] focuses on the domain of hand pose detection. Despite there being a lot of mod-
els for this application, HandOccNet targets the problem where the Hands are occluded by objects
which is a challenging problem. It tackles this problem by its use of several modules: backbone,
feature injecting transformer (FIT), self-enhancing transformer (SET) and regressor.

A hand image I € R512X512X3 ig pagsed through ResNet50-based FPN [11] and a feature map F
is obtained. A necessity map M is also obtained from the feature map F. These maps are used to
extract the primary features Xp and secondary features Xg using the element-wise multiplication
operation.

Xp:F®M

Xg=FQ)(1—M)

Primary feature Xp describe the information of the region of the hand and the secondary feature
X describe the information of the occluded region. The query is extracted from Xg and the key is
extracted from Xp.

Feature Injecting transformer injects the information of the primary features Xp into secondary
features Xg. It includes a softmax-based and a sigmoid-based attention module. The task of the
softmax based attention module is to find the relevant information of Xp from Xg. It generates a
correlation map Cy, ¢y € R1024x1024;

qsoftkz;ft

V dksoft

Csopt = softmax(

)
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where key ko5 is extracted from Xp, query gsof¢ from Xg with a two 1 x 1 convolutional layer.
ope = 256 denotes the feature dimension of kg, -

Sigmoid based attention module is used for filtering the undesired high correlation. The key
query pair are extracted in the same way as above and we form the correlation map Cy;, € R1024%1:

dy,

qsi kg;
(—=2))

Csig = sigmoid(pool
dp,

s8ig
The pooling here makes the correlation map robust to noisy correlations. The final correlation
map C € R1024x1024,

C = Csoft ® Osig

This correlation map C' is used for injecting the primary features in the occluded region. The
output X pgyr is passed through the self enhancing transformer whose task is to refine the output of
the FIT module. It utilizes the self attention of X gy by using a three 1 x 1 convolutional layers to
extract key k’, query ¢’ and value v’. It uses just the softmax based attention module to generate
the correlation map.

A regressor is finally used to produce the 3D Hand pose and the hand mesh. It is trained by
minimizing the loss function which is defined as the distance between predicted and ground truth
3D coordinates.

3.5 MHFormer
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Fig. 3: Architecture of MHFormer



Multi-Hupothesis Transformer[9] exploits the idea that a given video for a human pose can have
depth ambiguity and self-occlusion and therefore can have multiple different solutions (hypothesis).
It trains over the spatio-temporal representation of these hypothesis. The task here is done by
the three major modules: Multi-hypothesis generation (MHG), self-hypothesis refinement (SHR)
and cross-hypothesis interaction (CHI) along with two minor modules: temporal embedding and
regression head.

Starting with multi-hypothesis generation, assuming M different hypothesis, the module takes
the sequence of 2D poses X € RV*/%2 where N is the number of frames in the video and J is the
number of joints. It outputs multiple hypothesis Xy} ;o € R(2XN The spatial information of each
joint is also retained with the use of spatial position embedding and these are used in the encoders
for the MHG. The output here usually contains diverse information assuming different depths and
occlusion and therefore are enhanced further.

In order to build a strong relationship across different hypothesis features, the temporal de-
pendencies are exploited. Each hypothesis X}};~ generated by MHG are embedded to a high-
dimensional feature using transposition operation and linear embedding. Then the learnable tem-
poral positional embeddings are added to it.

The next module, self hypothesis refinement (SHR) works to refine each individual hypothesis
in the temporal domain. In order to do that, it uses two blocks: multi-hypothesis self attention
(MH-SA) and hypothesis mixing MLP (HM-MLP). THe MH-SA tries to learn from each hypothesis
independently in order to model the long-range dependency. In order to exchange the information
across hypothesis, hypothesis mixing MLP is used. Here the concatenated features of the multiple
hypothesis are fed and it produces even non-overlapping chunks.

Finally the CHI module takes a look at the interaction among multi-hypothesis features. In order
to do this, it also uses several blocks: multi-hypothesis cross attention (MH-CA) and hypothesis
mixing MLP. Like before, multi-hypothesis self-attention does not model the connection across
multiple hypothesis. In order to fix this issue, the MH-CA computes the correlation among cross
hypothesis features. It significantly boosts the power of model. Hypothesis mixing MLP serves a
similar process as the one in SHR where the output of MH-CA are passed through it and it generate
a single representation Xcpr € RN *(C.M)

Finally a regression head is used to produce the 3D pose sequence for the given center frame.
The model is trained on MPJPE loss.

4 Comparison

In order to evaluate the reviewed model, a number of datasets are used. These include Human3.6M
[6] for body pose estimation and HO-3D[4] for hand pose estimation.

The Human3.6M dataset includes 3.6 million images captured from 4 cameras. It includes 15
daily activities by 11 humans. There are generally 2 protocols for comparing the models. Protocol
1 takes into consideration the MPJPE metric for the analysis. As mentioned before, this measure
is the mean Euclidean distance calculated between the predicted and the ground truth 3D pose in
millimeters.

L2
L= jZHyk = k2
k=1

where yj is the ground truth pose and g is the predicted 3D pose. Protocol 2 considers P-
MPJPE as an evaluation metric for the models. P-MPJPE is MPJPE which is calculated after the
rigid alignment of the 3D pose using pose processing. For our analysis, we take a look at Protocol
1 (MPJPE) in 2 cases: using images as input and using ground truth as input.
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Method Dir. |Disc |Eat |Greet|Phone|Photo|Pose|Purch.|Sit [SitD.|Smoke|Wait|WalkD. Walk|WalkT.|Avg
PoseFormer|41.5 [44.8 |39.8|42.5 |46.5 |51.6 [42.1|42.0 [53.3|60.7 [45.5 |43.3 |46.1 31.8 [32.2 44.3
GraFormer [49.2 [53.9 |54.1 [55.0 |63.0 |69.8 |51.1|53.3 (69.4(90.0 |58.0 |55.2(60.3 |47.4 |50.6  |58.7
METRO |- - - - - - - - - - - - - - - 54.0
MHFormer {39.243.1|40.1 |[40.9 |44.9 |51.2 |40.6|41.3 [54.5|60.3 |[43.7 |41.1({43.8 |29.8(30.6 |43.0

Table 1: Protocol 1: MPJPE metrics for Poseformer, GraFormer, METRO and MHFormer on Human3.6M

Dataset

Table 1 shows that MHFormer performs the best in most of the categories and on average with
MPJPE (in mm) of 43.0. However it can also be obeserved that there are several categories where
PoseFormer works better than MHFormer, which are Eat and Sit. GraFormer performs the worst on
average. Considering temporal information helps MHFormer and Poseformer perform significantly
better than the other two models which only consider the spatial information. However no comment
can be made in comparison of GraFormer and METRO on each category as their average MPJPE
is close to each other with METRO being 9% better.

Method Dir. |Disc |Eat |Greet|Phone|Photo|Pose |Purch.|Sit [SitD.|Smoke|Wait|WalkD. Walk|WalkT.|Avg
PoseFormer|32.5 [34.8 [32.6 |34.6 |35.2 [39.3 [32.1(32.0 [42.8 |48.5 [34.8 [32.4 |35.3 24.5 126.0 34.6
GraFormer [32.0 38.0 |30.4 [34.4 |34.7 (43.3 |(35.2 (31.4 |38.0(46.2 |34.2 [35.7 |36.1 37.4 130.6 35.2
MHFormer |27.7(32.1/29.1|28.9 (39.9 [33.9 |33.031.2 [37.0|39.3|30.0 |31.0/29.4 |22.2(23.0 |30.5

Table 2: Protocol 2: P-MPJPE metrics for Poseformer, GraFormer and MHFormer on Human3.6M Dataset

Table 2 paints a similar picture as in table 1 where MHFormer performs the best among all the

models on average. However, it can also be seen that PoseFormer performs better in categories of

Phone and Pose than MHFormer. For the category Phone, even GraFormer performs better than
MHFormer. Despite that, on average, MHFormer performs 12% better than PoseFormer and 15%
better than GraFormer.

Method Joint|Mesh|F@Q5|F@Q15
METRO 10.4 [11.1 |48.4|94.6
HandOccNet|9.1 |8.1 |56.4(96.3

Table 3: Comparison metrics for METRO and HandOccNet using PA-MPJPE using HO-3D Dataset

In order to evaluate the performance of Hand Pose Estimation model, we use HO-3D dataset.

The common way of comparing different models is with the use of mean joint error and mean mesh

error (in mm) and also the F-scores

As seen in the table 3, HandOccNet performs better than METRO at detecting hand pose. An

improvement of 12% and 27% is observed in the joint and mesh error for HandOccNet than METRO
which proves that HandOccNet is robust to severe occlusions.

5 Conclusion

In this report, we’ve summarized the recent development on transformer-based 3D human and
hand pose estimation models. The architecture, results and metrics for each model is analyzed and
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compared. In this analysis, it can be said that MHFormer and HandOccNet perform the best in
class in their domain of pose analysis.
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