Seminar/Project: Computer Vision and Deep Learning

S3: 3D Pose Estimation using Transformers

Ayush Chamoli chamoli@rhrk.uni-kl.de Supervisor: Ahmed Tawfik Aboukhadra

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/real-time-human-pose-recognition -in-parts-from-single-depth-images-1.png

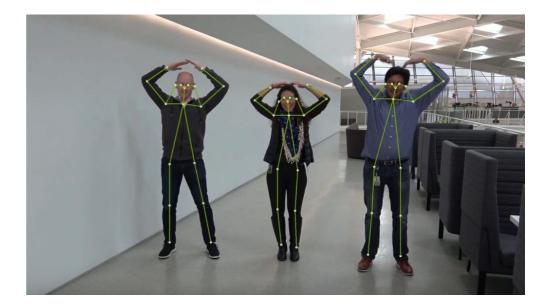
Do we really need to estimate pose?

- Kinect for Xbox 360: A revolution of its time.
- Paved a way for future of gaming and immersion.
- But the applications of pose estimation is far beyond...
- What's the current trend though?

19/09/2023

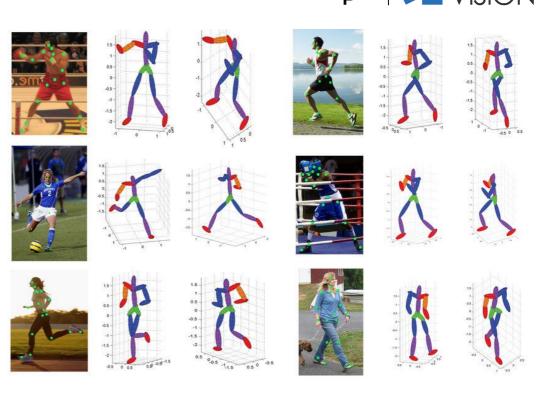
Do we really need to estimate pose?

- Currently used for action recognition, sport motion analysis and
- Also helps robots in providing medical assistance and rehabilitation.
- Hand pose detection is also really common now.



3D Pose Estimation

- Two common approaches to detect a 3D pose.
- Common methods exploit information in spatial domain or temporal domain or both.
- Convolution based and graph based architecture are commonly used for Pose Estimation.

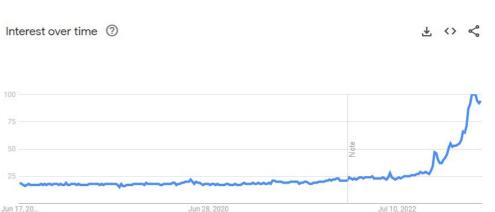


R

augmented

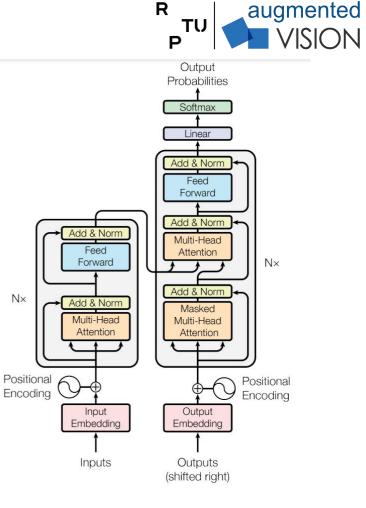
Transformers

- The "buzzword" for ML Enthusiasts of today.
- "Attention is All You Need" walked so ChatGPT could run.
- Can be applied to things outside Natural Language.

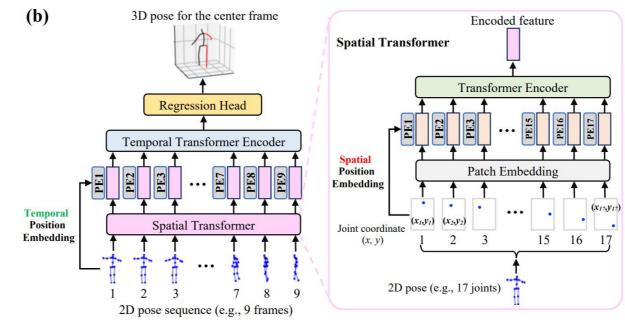


Transformers

- Uses self attention mechanism to capture long-range dependencies.
- Can be parallelized with multi-head self attention.
- Gives state of the art performance in CV tasks

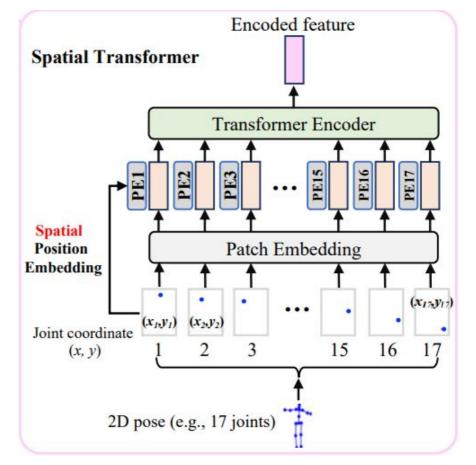


- Lifts human pose from 2D to 3D in videos.
- Models the spatial and temporal aspects with distinct transformer module.

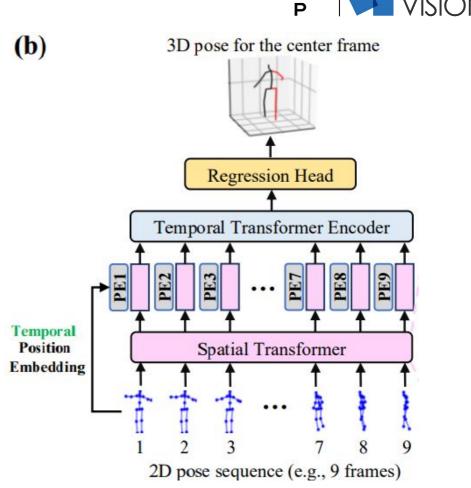


https://openaccess.thecvf.com/content/ICCV2021/papers/Zheng_3D_Human_Pose_Estimation_With_Sp atial_and_Temporal_Transformers_ICCV_2021_paper.pdf

- Spatial Module extracts the high dimensional feature embedding of each frame.
- The coordinates of the joints are projected to a higher dimension and spatial embeddings are added.
- These features are put through a spatial transformer with self attention over all joints.



- Temporal Module extracts dependencies across frames.
- Temporal positional embeddings are added.
- Passed through temporal transformer with multihead self attention.



R

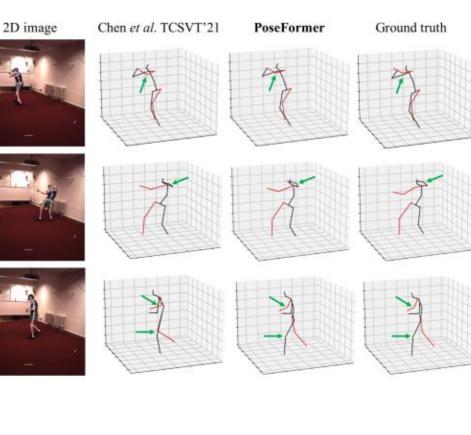
ΤU

https://openaccess.thecvf.com/content/ICCV2021/papers/Zheng_3D_Human_Pose_Estimation_With_Sp atial and Temporal Transformers ICCV 2021 paper.pdf

augmented

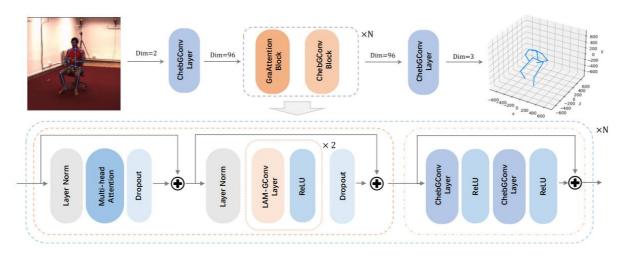
19/09/2023

- Regression head is used on the output of temporal transformer.
- Weighted mean operation with learnable parameters is used.
- MPJPE is used as an error metric.



GraFormer

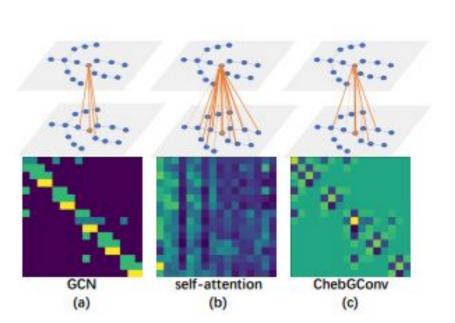
- Proposed a new architecture by stacking GraAttention and ChebGConv block.
- Model the best part of implicit and explicit relationship between nodes.
- Improves performance by enlarging receptive field of node information transmission.



https://openaccess.thecvf.com/content/CVPR2022/papers/Zhao_GraFormer_Graph-Oriented_Transforme r_for_3D_Pose_Estimation_CVPR_2022_paper.pdf

GraFormer

- GraAttention is a combination of multihead self-attention block and GCN layer.
- Includes a dropout layer for regularization of self-attention output.
- Each element of output of multihead attention block contains information of all 2D joints.



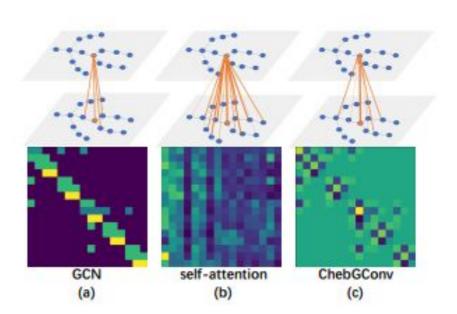
R

TU ⊨ P

R augmented VISION

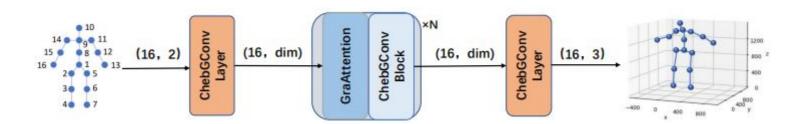
GraFormer

- Chebyshev graph convolution (aka ChebGConv) is used for the graph convolution operation.
- ChebGConv is more powerful compared with traditional GCN layers.
- Boosts the performance by fusing the information among the top K neighbors of a joint.



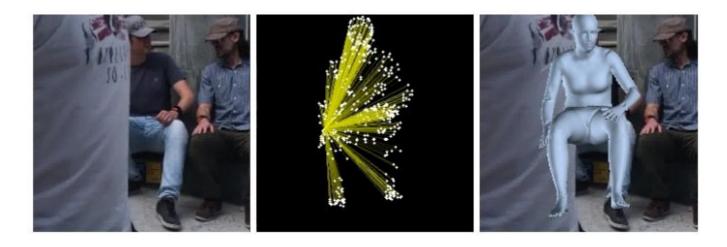
GraFormer

- 2D joint coordinates are preprocessed by ChebGConv layer.
- They are passed through a stack of GraAttention and ChebGConv blocks.
- GraAttention block exploits the global dependencies of joints whereas ChebGConv block exploits the local dependencies among the joints.
- MPJPE is used as ae error metric.



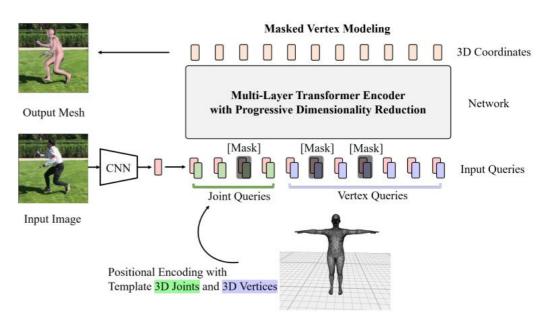
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhao_GraFormer_Graph-Oriented_Transforme r_for_3D_Pose_Estimation_CVPR_2022_paper.pdf

- Proposed a new transformer-based method aka METRO.
- Reconstructs 3D human pose and mesh vertices from a single image.
- Is versatile and can be used to predict different type of 3D mesh (3D Hand etc).



https://openaccess.thecvf.com/content/CVPR2021/papers/Lin_End-to-End_Human_Pose_and_Mesh_Re construction_with_Transformers_CVPR_2021_paper.pdf

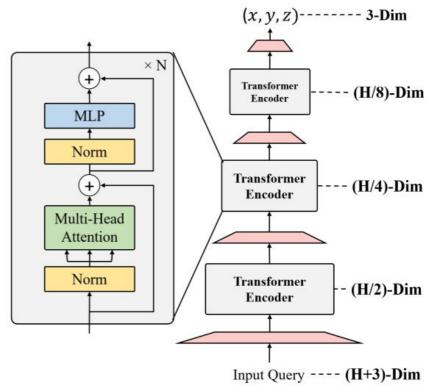
- Convolutional neural network
 block extracts features.
- It is pretrained on ImageNet classification task.
- Feature vector from the last hidden layer is taken as input for transformer block.



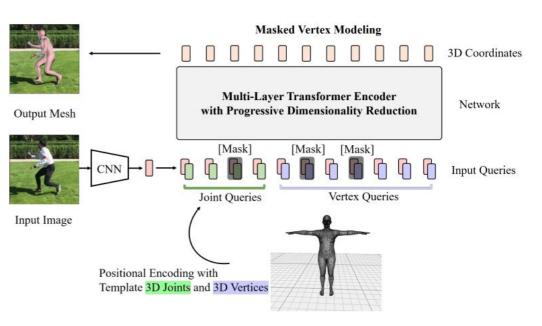
- Multi-Layer Transformer Encoder is a transformer encoder with several modifications.
- It performs gradual dimensionality reduction followed by transformer encoder block.
- Dimensionality reduction is necessary in order to obtain 3D coordinates output.

PTU augmented VISION

Multi-Layer Transformer Encoder with Progressive Dimensionality Reduction



- Masked Vertex Modeling (MVM) is used for regression task.
- It regress 3D coordinates by taking other vertices and joints in consideration.
- Helps in learning local and global interaction of each joint.
- MPJPE is used as an error metric.



HandOccNet

- Proposed a framework for occlusion-robust 3D Hand Mesh estimation.
- Uses two transformer based modules, FIT and SET.

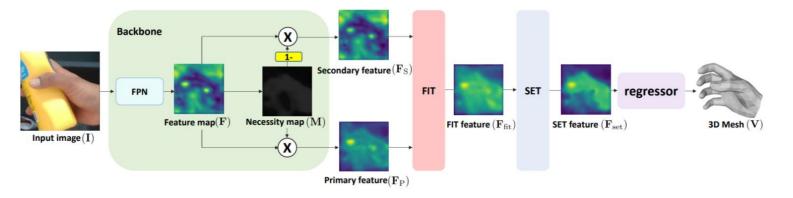


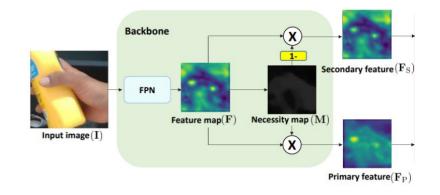
Fig. 1: Architecture of HandOccNet

https://openaccess.thecvf.com/content/CVPR2022/papers/Park_HandOccNet_Occlusion-Robust_3D_Ha nd_Mesh_Estimation_Network_CVPR_2022_paper.pdf

HandOccNet

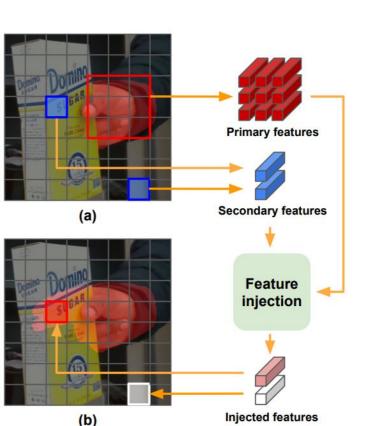
- Hand image is passed through a ResNet50 based Feature Pyramid Network.
- A Feature Map and a Necessity map is obtained.
- These are used to extract Primary and Secondary features.

20

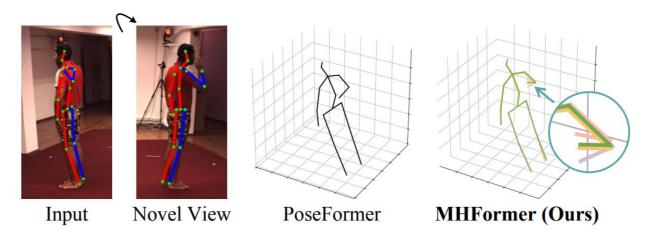


HandOccNet

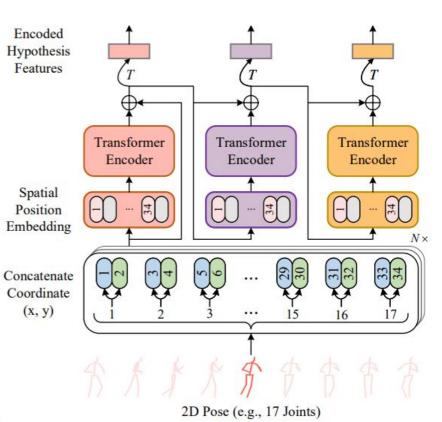
- Primary features describe information of region of hand.
- Secondary feature describe information of occluded region.
- FIT injects information into occluded region.
- SET refines the output of FIT.
- Regressor is used to estimate 3D pose.



- Exploits the idea where a human pose in a video can have depth ambiguity and self-occlusion.
- Makes use of three major modules: Multi-hypothesis generation (MHG), self-hypothesis refinement (SHR) and cross-hypothesis interaction (CHI).



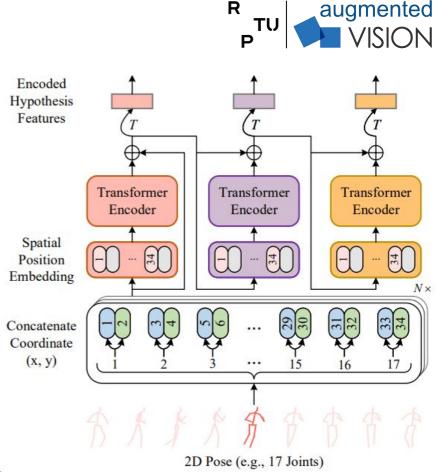
- Multi-hypothesis Generation takes a sequence of poses.
- Concatenates the (x, y) coordinates of joint for each frame and retain their spatial information.
- Output contains diverse information assuming different depth and occlusion.



R

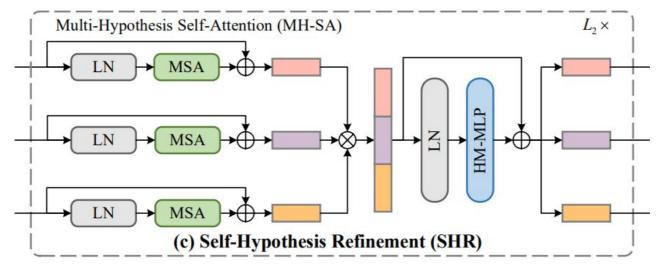
augmented

- Each output of MHG is embedded to • a higher dimension feature.
- Learnable temporal positional ٠ embedding are added to it.

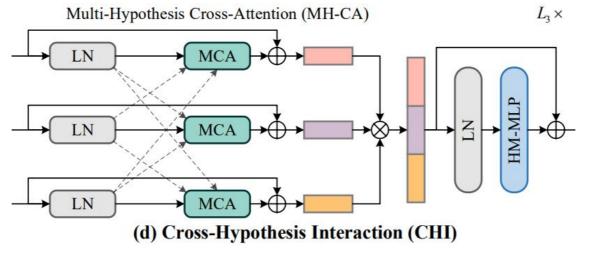


R

- Self Hypothesis refines each hypothesis in temporal domain with the use of multi-hypothesis self attention and hypothesis mixing MLP.
- MHSA leans from each hypothesis independently.
- Mixing MLP is used to exchange information among hypothesis.



- Cross hypothesis interaction block boosts the performance.
- It includes multi hypothesis cross attention and hypothesis mixing MLP.
- MHCA computes cross correlation among cross hypothesis.
- Finally a regression head is used to produce 3D pose.



Evaluation metric

• Protocol 1: Mean per joint projection error (MPJPE)

$$L = \frac{1}{J} \sum_{k=1}^{J} ||y_k - \hat{y}_k||_2$$

 Protocol 2: P-MPJPE: MPJPE after rigid alignment of the 3D pose using pose processing

Results

- Protocol 1(MPJPE)
- MHFormer performs the best in most of the categories.
- Poseformer performs better at Eat and Sit pose.

Method	Dir.	Disc	Eat	Greet	Phone	Photo	Pose	Purch.	Sit	SitD.	Smoke	Wait	WalkD.	Walk	WalkT.	Avg
PoseFormer	41.5	44.8	39.8	42.5	46.5	51.6	42.1	42.0	53.3	60.7	45.5	43.3	46.1	31.8	32.2	44.3
GraFormer	49.2	53.9	54.1	55.0	63.0	69.8	51.1	53.3	69.4	90.0	58.0	55.2	60.3	47.4	50.6	58.7
METRO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	54.0
MHFormer	39.2	43.1	40.1	40.9	44.9	51.2	40.6	41.3	54.5	60.3	43.7	41.1	43.8	29.8	30.6	43.0
Table 1: Protocol 1: MDIDE matrice for Deceformer, CraFormer, METRO and MHEermer on Human 2.6M																

Table 1: Protocol 1: MPJPE metrics for Poseformer, GraFormer, METRO and MHFormer on Human3.6M Dataset

Results

- Protocol 2(P-MPJPE)
- MHFormer still performs the best in most of the categories.
- GraFormer performs best at Phone.
- Poseformer performs best at Pose.
- MHFormer performs 12% better than Poseformer and 15% better than Graformer.

Method	Dir.	Disc	Eat	Greet	Phone	Photo	Pose	Purch.	Sit	SitD.	Smoke	Wait	WalkD.	Walk	WalkT.	Avg
PoseFormer	32.5	34.8	32.6	34.6	35.2	39.3	32.1	32.0	42.8	48.5	34.8	32.4	35.3	24.5	26.0	34.6
GraFormer	32.0	38.0	30.4	34.4	34.7	43.3	35.2	31.4	38.0	46.2	34.2	35.7	36.1	37.4	30.6	35.2
MHFormer	27.7	32.1	29.1	28.9	39.9	33.9	3 <mark>3.</mark> 0	31.2	37.0	39.3	30.0	31.0	29.4	22.2	23.0	30.5

Table 2: Protocol 2: P-MPJPE metrics for Poseformer, GraFormer and MHFormer on Human3.6M Dataset

Results

- Hand Pose Evaluation
- Uses Mean Joint Error and Mean Mesh Error.
- HandOccNet performs better than METRO.
- An improvement of 12% and 27% is observed in joint and mesh error respectively.

Method	Joint	Mesh	F@5	F@15
METRO	10.4	11.1	48.4	94.6
HandOccNet	9.1	8.1	56.4	96.3

Table 3: Comparison metrics for METRO and HandOccNet using PA-MPJPE using HO-3D Dataset

Related Works

- Ce Zheng, Sijie Zhu, Matias Mendieta, Taojiannan Yang, Chen Chen, and Zhengming Ding. 3d human pose estimation with spatial and temporal transformers, 2021.
- Weixi Zhao, Yunjie Tian, Qixiang Ye, Jianbin Jiao, and Weiqiang Wang. Graformer: Graph convolution transformer for 3d pose estimation, 2021.
- Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end human pose and mesh reconstruction with transformers, 2021.

Related Works

- JoonKyu Park, Yeonguk Oh, Gyeongsik Moon, Hongsuk Choi, and Kyoung Mu Lee. Handoccnet: Occlusion-robust 3d hand mesh estimation network, 2022.
- Wenhao Li, Hong Liu, Hao Tang, Pichao Wang, and Luc Van Gool. Mhformer: Multi-hypothesis transformer for 3d human pose estimation, 2022.

Thank you for your attention!

DFKI GmbH Department Augmented Vision Trippstadterstr. 122 D-67663 Kaiserslautern

